Intelligente Wärme. Sauberer Strom.

Brennstoffzellensysteme von HEXIS kombinieren
Spitzentechnologie mit umweltschonender Effizienz.

How does a fuel cell work? 

The HEXIS fuel cell system converts hydrogen from natural gas based on oxide ceramic fuel cells (SOFC: Solid Oxide Fuel Cell). The fuel cell converts natural gas with superior efficiency into heat and electricity by electrochemical processes.

  

Galileo: Combined heat and power production out of natural gas

 

 

 

 

 

 

 

 

The HEXIS system reforms natural gas into process gas consisting of hydrogen, carbon-monoxide and residual methane for the fuel cell. Then, the high temperature fuel cell produces heat for hot water and heating requirements and also electrical power as a highly valuable byproduct. When necessary, the integrated auxiliary burner can supply additional heat.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HEXIS fuel cell technology

 

 

 

 

 

 

The HEXIS solide oxide fuel cell stack consists out of a cell (ceramic electrolyte /electrode units) and a metallic interconnection (MIC) arrangement which finally composes an electrical series combination of both. Approximately 60 cells and MICs are stacked whereas for each level the fuel is supplied by a channel in the center and the air inlet can be found on the outer rim.

 

 

 

 

 

The role of the current collector (MIC)

The current collector's primary task is ensuring the electrical contact between the individual stack segments. In addition, it also distributes the gases on the electrode surface, blocks the gas from the air flow and allows aerodynamic after-burning on the stack circumference. Fuel flows from the inside out of the channel on the anode side of the cell radially outwards.

 

Efficient after-burning

Pre-heated air is distributed via four channels across the cathode-side of the cell to supply the electro-chemical reaction. On the outer rim, the rest of methane and oxygen can be converted by the after-burner into heat.


 

 

 

Electricity generation vie oxygen concentration gradients

 

The main component of the SOFC (solide oxide fuel cell) is a gas tight electrolyte which conducts oxygen ions at its operating temperature. The two micro porous electrodes, anode and cathode are adjacent to it. The combustible process gas flows across the anode whilst air is flowing across the cathode. The resulting oxygen concentration gradient between the electrodes attempts the ion exchange process and result in an electrical current for external loads.

 

 

01/04/2018

Weiterentwicklung des Marktes für stationäre Brennstoffzellen mit PACE

PACE ist ein von der Europäischen Kommission im Rahmen von Horizon 2020 gefördertes Projekt. Viessmann ist Teil des Konsortiums, dass insgesamt 2650 Brennstoffzellen-System… Mehr

Galileo 1000 N wurde erfolgreich vermarktet.

Alle Galileo haben ihren Kunden gefunden. Der Nachfolger von Galileo wird derzeit entwickelt und später über die bekannten Viessmann-Vertriebswege vermarktet. Doch bereits heute bietet Viessmann ein sehr attraktives und zuverlässiges Brennstoffzellen-Heizgerät an.Vitovalor 300-P

Studie und Fachreihe

Mit Studie und Fachreihe mehr erfahren.

Produktbroschüre Galileo  Download Lösungsbeispiel Galileo 1000 N
> Studie  > Fachreihe